Vitasvet-led.ru

Витасвет Лед
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздушные выключатели конструкция принцип действия

Воздушный выключатель: принцип работы, преимущества, недостатки

Защита и распределительные устройства

Этот тип выключателей — это такой автоматических выключателей, который работает на воздухе при атмосферном давлении. После разработки масляного выключателя автоматический автоматический выключатель среднего напряжения (ACB) полностью заменяется масляным выключателем в разных странах.

Принцип работы воздушного выключателя (ACB)

Принцип работы этого выключателя сильно отличается от принципа работы любого другого типа выключателей. Основная цель автоматического выключателя всех типов — предотвратить восстановление дуги после нулевого тока, создав ситуацию, когда контактный зазор будет выдерживать напряжение восстановления системы. Воздушный выключатель работает одинаково, но по-разному. Для прерывания дуги он создает напряжение дуги, превышающее напряжение питания. Дуговое напряжение определяется как минимальное напряжение, требуемое для поддержания дуги. Этот автоматический выключатель увеличивает напряжение дуги главным образом тремя различными способами:

1. Он может увеличить напряжение дуги за счет охлаждения дуговой плазмы. По мере уменьшения температуры дуговой плазмы подвижность частицы в дуговой плазме уменьшается, поэтому для поддержания дуги требуется более высокий градиент напряжения.

2. Он может увеличить напряжение дуги за счет удлинения дуги. По мере увеличения длины пути дуги сопротивление пути увеличивается и, следовательно, для поддержания того же дугового тока требуется дополнительное напряжение для прохождения по дуговому пути. Это означает, что напряжение дуги увеличивается.

3. Разделение дуги на ряд последовательных дуг также увеличивает напряжение дуги.

Первая цель обычно достигается за счет превода дугу в контакт с большей площадью из изоляционного материала. Каждый воздушный выключатель оснащен камерой, окружающей контакт. Эта камера называется «дуговым лотком». Дуга приводится в нее. Если внутренняя часть дугового желоба имеет соответствующую форму, и если дуга может соответствовать форме, стена дугового желоба поможет добиться охлаждения. Этот тип дугогасительных должен быть сделан из огнеупорного материала.

Вторая цель, которая удлиняет путь дуги достигается одновременно с первой целью. Если внутренние стенки дугового желоба сформированы таким образом, что дуга не только принудительно приближается к ней, но также приводится в змеевидный канал, проецируемый на стенку дугового желоба. Удлинение дуговой дорожки увеличивает сопротивление дуги.

Третья цель достигается за счет использования металла дуговой резки внутри дугогасительной камеры. Главный дуговый желоб разделяется на числа небольших отсеков с использованием металлических разделительных пластин. Эти металлические разделительные пластины на самом деле являются дуговыми разветвителями, и каждый из небольших отсеков ведет себя как отдельный мини-дуговый желоб. В этой системе начальная дуга разбивается на ряд последовательных дуг, каждый из которых будет иметь свой собственный мини-дуговый желоб.

1. Основные контакты

2. Запирающие контакты

3. Нарезка дуги в направлении стрелки

5. Токопроводящие клеммы

В воздушном резервуаре находится воздух под высоким давлением от 20 до 30 кг / см2. И этот воздух взят из системы сжатого воздуха. На резервуаре имеются три полые изоляционные колонны, установленные с клапанами у основания. На верхней части пустотелых изоляционных камер установлены две дугогасящие камеры. Токоподводящие части соединяют три камеры выгорания дуги друг с другом последовательно, а полюс — к соседнему оборудованию, так как между проводником и воздушным резервуаром существует очень высокое напряжение, весь узел камеры гашения дуги установлен на изоляторах. Поскольку в серии есть три столба с двойной дугой, у них шесть размыкателей на полюс. Каждая камера выгорания дуги состоит из одного двойного фиксированного контакта. Есть два движущихся контакта. Движущиеся контакты могут перемещаться в осевом направлении, чтобы открываться или закрываться.

Механизм работы управляет стержнями, когда он получает пневматический или электрический сигнал. Клапаны открываются так, чтобы посылать воздух высокого давления в полость изолятора. Воздух высокого давления быстро поступает в камеру с двойной дугой. Когда воздух поступает в камеру гашения экструзии, давление на движущиеся контакты становится больше, чем пружинное давление, и это приводит к открытию контактов.

Контакты перемещаются на короткое расстояние против давления пружины. В конце контактов перемещение части для выходящего воздуха закрывается движущимися контактами, и вся камера гашения дуги заполнена воздухом высокого давления, так как воздух не пропускается. Однако в течение периода дуги воздух выходит через отверстия и отводит ионизированный воздух. Закрывая клапан, он поворачивается так, чтобы закрыть соединение между полостью изолятора и резервуаром.

Клапан подает воздух из полого изолятора в атмосферу. В результате давление воздуха в камере затухания дуги снижается до атмосферного давления, а движущиеся контакты закрываются по неподвижным контактам благодаря пружинному давлению, открытие происходит быстро, потому что воздух занимает незначительное время для перемещения из резервуара к движущемуся контакту. Дуга гаснет в течение цикла. Таким образом, воздушный выключатель очень быстро разрушает ток. Закрытие также происходит быстро, потому что давление в камере погашения дуги сразу падает, а контакты закрываются в силу давления пружины.

Преимущества:

· Рост диэлектрической прочности настолько быстр, что конечный контактный зазор, необходимый для выгорания дуги,
очень мал, что уменьшает размер устройства.

· Риск пожара устраняется.

· Из-за меньшей энергии дуги, воздушные воздушные выключатели очень подходят для условий, требующих частых операций.

· Дугогасительные изделия полностью удаляются при взрыве, в то время как масло ухудшается при последовательных операциях; исключается замена обычного масла.

· Энергия, подаваемая для выгорания дуги, получается из воздуха высокого давления и не зависит от тока, который должен быть прерван.

· Время дуги очень мало из-за быстрого нарастания диэлектрической прочности между контактами. Поэтому энергия дуги является лишь малой величиной, что в масляных выключателях приводит к меньшему сжиганию контактов.

Недостатки:

· Для компрессорной установки, которая обеспечивает воздушный взрыв, требуется значительное техническое обслуживание.

Читать еще:  Лестничный выключатель принцип работы

· Воздушные выключатели очень чувствительны к изменениям скорости перенапряжения.

· Воздушные выключатели широко применяются в установках высокого напряжения. Большинство выключателей для напряжений свыше 110 кВ относятся к этому типу.

Электрические аппараты — Воздушные выключатели

Содержание материала

  • Электрические аппараты
  • Режимы работы электрических аппаратов
  • Электромагниты
  • Электрические контакты
  • Дуга
  • Предохранители
  • Автоматические выключатели
  • Контакторы и магнитные пускатели
  • Реле, интегральные микросхемы
  • Трансформаторы тока
  • Трансформаторы напряжения
  • Разьединители, отделители и короткозамыкатели
  • Масляные выключатели
  • Воздушные выключатели
  • Элегазовые выключатели
  • Выключатели электромагнитные
  • Выключатели вакуумные
  • Выбор выключателей

ВЫКЛЮЧАТЕЛИ ВОЗДУШНЫЕ

Воздушные выключатели, в которых гашение дуги осуществляется потоком сжатого воздуха, получили весьма широкое распространение и во многих случаях вытеснили масляные. Они позволили перейти к классам напряжения 750 и 1150 кВ и в основном применяются:
как сетевые на напряжение 6—1150 кВ с номинальными токами до 4000 А и токами отключения до 63 кА;
как генераторные на напряжение 6—20 кВ с номинальными токами до 20 кА и токами отключения до 160 кА;
как выключатели нагрузки на 6—220 кВ и 110—500 кВ и выключатели комплектных распределительных устройств на напряжение до 35 кВ.
Ожидается, что в ближайшее время появятся сетевые выключатели на напряже- ние 1500—2000 кВ с номинальными токами 10—15 кА и токами отключения: 100—120 кА и генераторные выключатели на номинальные токи до 50 кА с токами отключения до 300 кА.
Выключатели выпускаются различного климатического исполнения, для различных категорий размещения и различного вида установки (опорные, подвесные, настенные, выкатные и др.).
Независимо от типа и конструкции воздушный выключатель состоит из трех основных частей: дугогасительного устройства с отделителем или без него, системы снабжения сжатым воздухом и системы управления. Система управлен выполняется с одним пневматическим приводом с механической передачей, с индивидуальной пневматической передачей, с пневмомеханической передачей, с пневмогидравлической передачей и пневмосветовой передачей.
Гашение дуги в выключателях осуществляется сжатым воздухом номинальным давлением 0.6—5 МПа в различных камерах продольного и поперечного, одностороннего и двустороннего дутья с соответствующим напряжению числом последовательно включенных разрывов.
В выключателях с отделителем размыкание дугогасительных контактов и га- шение дуги осуществляются одним и тем же потоком сжатого воздуха, поступающего из отдельного резервуара. Контакты (один или оба) выполнены в виде контактно- поршневых механизмов. Во включенном положении выключателя в дугогогасительном устройстве и в отделителе все контакты замкнуты. При подаче команды на отключение сжатый воздух из резервуара подается в дугогасительную камеру, размыкает контакты и гасит дугу. Обычно параллельно контактам включается шунтирующий резистор, облегчающий гашение дуги. После погасания дуги на основных дугогасительных контактах размыкается отделитель, который отключает оставшийся ток. Отделитель может выполняться открытым (до 35 кВ) или в виде воздухонаполняемых камер. После погасания дуги на отделителе подача воздуха в дугогасительные камеры прекращается и контакты под действием пружин замыкаются. Контакты же отделителя остаются разомкнутыми, обеспечив необходимое изоляционное расстояние для разомкнутой цепи.
В выключателях без отделителя широко применяются воздухонаполненные металлические камеры (резервуары), в которых размещены дугогасительные устройства. Привод контактов отделен от гасящей среды. При размыкании контактов открываются выхлопные клапаны камер и сжатый воздух, вытекая из камер через соответствующие сопла контактов, гасит дугу. Контакты могут выполняться одно- и двухступенчатыми. Число последовательно включенных дугогасительных устройств определяется номинальным напряжением выключателя. Изоляционный промежуток в отключенном положении обеспечивается расхождением этих же контактов на соответствующее расстояние. Ниже приведены примеры исполнения выключателей.


Рисунок 2 — Конструктивная схема воздушного выключателя ВВП-35

Конструктивная схема воздушного выключателя (ВВП-35) с контактно-поршневым механизмом и открытым отделителем приведена на рис. 2. Выключатель состоит из трех механически связанных полюсов (на рисунке приведен разрез одного полюса), смонтированных на общем основании (резервуаре 1), и распределительного шкафа (на рисунке не показан). На резервуаре установлены: дугогасительные устройства 5 на опорных изоляторах 2, неподвижные контакты 12 отделителя 10 на изоляторах 16, электропневматическое устройство 17 (одно на три полюса) для управления встроенным в резервуар дифференциальным клапаном 18и привод (на рисунке не показан), управляющий отделителем через вал 15 и изоляционные штанги 14. Полюсы выключателя (отделителя) разделены между собой изоляционными перегородками 11 и имеют выводы 7 и 13.
При открытии дифференциального клапана сжатый воздух из резервуара через полость опорного изолятора поступает в дугогасительную камеру, давит на контактно-поршневой механизм 8, размыкает контакты (неподвижный 3, подвижный 6) и через сопло подвижного контакта выдувает и гасит дугу. Пламя дуги охлаждается в пламегасительной решетке 9. Для облегчения гашения дуги контакты шунтированы резистором 4. После погасания дуги отделитель 10 размыкается и отключает оставшийся ток.
Длительность времени подачи дутья в дугогасительную камеру регулируется механизмом пневматической отсечки электропневматического устройства. После того как дифференциальный клапан закроется, подача воздуха в камеру прекратится, давление в ней упадет и подвижный контакт под действием пружины контактно-поршневого механизма возвратится на место, контакты замкнутся. Однако цепь останется разомкнутой отделителем.
Генераторные выключатели. Функциональная электрическая схема полюса и общий вид выключателя ВВГ-20 (Uном = 20 кВ, Iном = 20 кА, Iоном = 160 кА, сквозной ток 410 кА) с воздухонаполненным отделителем приведены на рис. 3. Полюс выключателя состоит из основного токоведущего контура — выводов 1 и 4 и разъединителя (основного контакта) 2, основных дугогасительных контактов 7 и 10, которые шунтированы резисторами 8и 11 соответственно, вспомогательных дугогасительных контактов 6, отделителя 9 и разрядника 3с нелинейным резистором 5.


Рисунок 3 — Функциональная электрическая схема полюса (а) и общий вид (б) генераторного воздушного выключателя ВВГ с воздухонаполненным отделителем

Все устройства монтируются на баке и снабжаются соответствующими электро- пневматическими приводами. Выключатель состоит из трех одинаковых полюсов, связанных между собой воздуховодами, и распределительного шкафа.
Во включенном положении большая часть тока протекает через основной токо- ведущий контур. При отключении сначала размыкается основной контакт 2 и в ток переходит в дугогасительный контур. Затем размыкаются основные дугогасительные контакты 7 и 10; ограниченный резисторами 8 и 11 ток протекает через вспомогательные дугогасительные контакты 6. После их размыкания и погасания дуги ток в цепи прекращается и размыкается отделитель 9, обеспечивая необходимый изоляционный промежуток. Разрядник служит для ограничения перенапряжений при отключении (в случае их возникновения). После прекращения подачи сжатого воздуха контакты 6, 7 и 10 под действием пружин возвращаются во включенное положение.
Выключатели серии ВВБ. Общий вид и функциональная схема дугогасительного устройства без отделителя приведены на рис. 4. В металлическом резервуаре (камере) 6, заполненном воздухом под высоким давлением (1.6—2.4 МПа) размещается дугогасительное устройство с двумя разрывами (контакты — подвижные 8, неподвижные 9) одностороннего дутья (сопло 4). Резервуар находится под высоким потенциалом. Напряжение подводится через выводы 13 с эпоксидной изоляцией 14, защищенные снаружи фарфоровыми рубашками 12. Основные разрывы (контакты 8 и 9) шунтированы линейными резисторами 10, что облегчает гашение дуги на них. Оставшийся ток отключается вспомогательными дугогасительными разрывами (контакты — неподвижный 15, подвижный, полый, он же сопло 17 — закрыты кожухом 1). Камеры могут выполняться и без вспомогательных контактов, а следовательно, и без шунтирующих резисторов. Полное гашение осуществляется на основных разрывах. Конденсаторы (делительные) 11 служат для выравнивания напряжения по разрывам в отключенном положении выключателя.

Рисунок 4 – Общий вид (а) и функциональная схема (б) дугогасительного устройства без отделителя выключателей серии ВВБ

Читать еще:  Чем можно заменить автоматический выключатель


Рисунок 5 — Полюс выключателя серии ВВБ на 220 кВ

(К рис. 4) Контакты камеры управляются пневмоэлектрическими механизмами 18. При подаче воздуха в цилиндр 2 поршень 3, связанный с траверсой 7, размыкает основные контакты. Одновременно открываются клапаны 19 выхлопных каналов сопел. Сжатый воздух устремляется наружу (показано стрелками), гасит дугу в соплах. Аналогично гасится дуга на вспомогательном разрыве. После погасания дуги выхлопные клапаны сопел закрываются. Давление внутри резервуара несколько снижается. Объем резервуара и давление в нем рассчитаны так, что камера способна выполнить несколько отключений. При этом давление в резервуаре не упадет ниже допустимого для надежного гашения дуги.
В отключенном положении контакты удерживаются давлением в цилиндре 2. Для включения выключателя воздух из цилиндра выпускается через клапан 16. Возвратный механизм 5 замыкает контакты. Соответственно управляются и вспомогательные разрывы.
Камера устанавливается на изоляционную опору 20, через которую проходят воздуховоды — основной 22 (высокого давления) и управления 21.
Приведенное дугогасительное устройство принято как модуль на 110—150 кВ для выключателей до 750 кВ без отделителей. Каждый выключатель состоит из трех полюсов, не имеющих между собой механической связи, и одного (35, 110, 220 кВ) или четырех (330, 500 и 750 кВ) распределительных шкафов. Отсутствие механической связи между полюсами позволяет выполнять трехфазное или пополюсное отключение.
Полюсы выключателей на 35, 110 кВ состоят из одной дугогасительной камеры-модуля (одного резервуара 6 — рис. 4), расположенной на изоляционной опоре. Полюс выключателей на 220 кВ (рис. 5) состоит из двух металлических дугогасительных камер 1, разделенных промежуточным изолятором 2 и расположенных на соответствующей изоляционной опоре 3. Полюсы выключателей на 330, 500 и 750 кВ состоят соответственно из двух, трех и четырех однотипных элементов (четырех, шести и восьми модулей), каждый из которых представляет собой полюс выключателя на 220 кВ на соответствующей изоляционной опоре,— показано штрихпунктирными линиями).
. Выключатели воздушные серии ВВБК выпускаются на напряжение 110-1150 кВ, номинальный ток 3200 и 4000 А, номинальный ток отключения 5-40 кА, номинальное давление сжатого воздуха 4 МПа, время отключения 0.04 с.
Эти выключатели являются дальнейшим шагом в развитии конструктивных принципов, заложенных в серии ВВБ. Отличительными их особенностями являются повышенное рабочее давление воздуха и усовершенствованное дугогасительное устройство с несимметричным дутьем, что позволило повысить напряжение модуля (220 и 330 кВ — два модуля, 500 и 750 кВ — четыре модуля, 1150 кВ — шесть модулей). Выключатели снабжены новой быстродействующей системой управления.

Тенденции в развитии современных воздушных выключателей

1. Модульный принцип построения серий. Этот принцип позволяет строить серии в весьма большом диапазоне напряжений (35-1150 кВ) из одинаковых модулей, производить помодульные испытания и иметь максимально выгодные условия производства, эксплуатации и монтажа. Наметилась тенденция существенного увеличения напряжения, приходящегося на один модуль (250 кВ и выше).
2. Размещение дугогасительных устройств непосредственно в сжатом воздухе. При этом обеспечиваются максимальная коммутационная способность, быстродействие, изоляционная прочность межконтактных промежутков и пропускная способность по номинальному току. Наибольшее применяемое сейчас давление достигает 6-8.5 МПа.
3. Применение быстродействующих систем управления с малым разбросом времени оперирования. Основным назначением таких систем является обеспечение работы выключателей на очень высокие напряжения с временем отключений до одного полупериода, а также выключателей с синхронным отключением или включением.
4. Ограничение коммутационных перенапряжений, что особенно важно для выключателей высших классов напряжения.
5. Повышение надежности и увеличение межремонтных сроков до 15—20 лет.
6. Введение принудительного охлаждения для генераторных выключателей.

Воздушные автоматические выключатели — современная защита и высокая надежность

Сегодня, пожалуй, уже невозможно представить себе нашу жизнь без электроприборов. Чаще всего мы имеем дело с бытовыми приборами, которые подключены к сетям с уровнем номинального напряжения 0,4 кВ. К работе с более высоким напряжением допускается только квалифицированный персонал.

Главную роль в распределении электроэнергии 0,4 кВ играют силовые автоматические воздушные выключатели. Силовые автоматические воздушные выключатели стоят наверху иерархии низковольтной сети. Именно от их качества и надежности работы зависит бесперебойность снабжения конечного потребителя, а также долговечность питающих силовых низковольтных линий. Они применяются в качестве вводных и секционных аппаратов.

Читать еще:  Выключатель массы маз 5440

Действительно, задачи, которые на них возлагаются очень ответственны. В нормальном режиме воздушные автоматические выключатели должны проводить рабочие токи в несколько тысяч ампер, а в аварийном — отключать токи к.з., достигающие нескольких десятков тысяч ампер!

Решить эти непростые задачи могут только аппараты, которые изготовлены из материалов высшего качества. Чистая электротехническая медь обеспечивает максимальную токопроводность, экономичность и долговечную эксплуатацию. Однако не только высокое качество материалов обеспечивает должную надежность в работе. Более сложную задачу решают инженеры-конструкторы, выбирая материалы контактов. Изменяя пропорции серебра, никеля, графита и других материалов, они добиваются максимальных показателей износостойкости, ПКС, уменьшают нагрев и свариваемость контактов.

В современном воздушном автоматическом выключателе не менее важную роль играет основной орган управления и защиты — микропроцессорный расцепитель.

С его помощью осуществляется точная настройка уставок времени и токов различных видов защит, регистрация и учет всех происходящих событий. В режиме реального времени на ЖК-дисплее персоналу доступны величины рабочих токов, уставки защиты, информация об авариях, коммутациях и т.д.
Микропроцессорный расцепитель сравнивает значения рабочих токов по каждой фазе и при превышении одним из них установленного потребителем значения подает сигнал для отключения воздушного автоматического выключателя.
Еще одним важным преимуществом является возможность дистанционного отключения, что позволяет экономить время оперативного персонала при переключениях в электрических схемах. Также протокол Modbus RTU позволяет передавать в диспетчерский пункт информацию, как о текущих параметрах цепи, так и о настройках воздушного выключателя, а самое главное — информацию о срабатывании выключателя (токи к.з., время аварии, причина срабатывания выключателя)
Стоит отметить, что в микропроцессорном расцепителе защита от однофазного замыкания на землю и индикация этого вида аварии является большим преимуществом. Этот вид защиты имеет большое значение, так как однофазное к.з. на землю является самым вероятным повреждением электрической сети (65%). Индикация этого вида повреждения позволяет персоналу в кратчайшие сроки разобраться в причине аварии и приступить к восстановительным работам. При выборе расцепителя следует отдавать предпочтением тем моделям, где реализована эта функция.
Силовой воздушный автоматический выключатель — это надежное и современное решения для главного распределительного щита, ВРУ, а также щита питания потребителя большой мощности.

Вопросы по ЭЭА (вечерники)

Вопросы по ЭЭА (вечерники)

1. Основные определения ЭА. Классификация ЭА.

2. Области применения ЭА.

3. Основные процессы и режимы работы ЭА.

4. Требования предъявляемые к ЭА.

5. Реле. Классификация реле.

6. Контактные явления в ЭА. Классификация электрических контактов.

7. Электромеханические реле. Классификация.

8. Тепловые процессы в ЭА. Анализ способов распространения теплоты в ЭА.

9. Устройство и принцип действия простейшего электромеханического реле.

10. Электромагнитные реле. Принцип действия и устройство электромагнитных реле.

11. Характеристики электромагнитных реле. Достоинства и недостатки электромагнитных реле.

12. Электромагнитные реле защиты. Реле максимального тока РТ-40.

13. Электромагнитные реле для промышленных автоматических устройств. Промежуточное реле РПЛ.

14. Электромагнитное реле радиоэлектронных устройств. Реле серии РЭС-80.

15. Реле времени. Основные определения и требования предъявляемые к ним.

16. Классификация реле времени.

17. Конструкция и принцип действия реле времени серии ЭВ-100.

18. Тепловое реле.

19. Поляризованное реле. Индукционное реле.

20. Герконы. Преимущества и недостатки герконов.

21. Классификация герконовых реле.

22. Ртутные реле.

23. Контакторы. Классификация контакторов.

24. Конструкция и принцип действия контактора постоянного тока.

25. Магнитный пускатель. Применение и выполнение магнитных пускателей.

26. Принцип действия и конструкция магнитного пускателя серии ПМЭ.

27. Контакторы переменного тока.

28. Предохранители. Классификация предохранителей.

29. Времятоковая характеристика предохранителей. Требования предъявляемые к предохранителям.

30. Предохранители низкого напряжения.

31. Предохранители высокого напряжения.

32. Рубильники и переключатели.

33. Автоматические выключатели. Классификация автоматов.

34. Преимущество автоматов перед плавкими предохранителями. Требования предъявляемые к автоматам.

35. Конструкция и принцип действия автоматов.

36. Расцепители автоматического выключателя.

37. Разновидности автоматических выключателей. Их конструкция и принцип действия.

38. УЗО – устройство защитного отключения.

39. Электромеханические датчики. Классификация датчиков.

40. Активные датчики.

41. Пассивные датчики.

42. Кнопки управления.

43. Путевые, конечные выключатели и микровыключатели.

44. Командоаппараты. Классификация контроллеров.

45. Барабанные контроллеры.

46. Кулачковые контроллеры.

47. Аппараты высокого напряжения.

48. Измерительные трансформаторы тока.

49. Трансформаторы. Классификация трансформаторов.

50. Измерительные трансформаторы напряжения.

51. Силовые трансформаторы и автотрансформаторы.

53. Конструкция и принцип действия трансформатора тока.

55. Ограничители перенапряжений.

56. Реакторы. Токоограничивающие и бетонные реакторы.

57. Выключатели высокого напряжения. Классификация высоковольтных выключателей.

58. Воздушные выключатели. Классификация воздушных выключателей.

59. Устройство и принцип действия воздушных выключателей.

60. Дугогасительные устройства воздушных выключателей.

61. Элегазовые выключатели. Классификация, устройство и принцип действия, дугогасительная система.

62. Масляные выключатели. Конструкция и принцип действия масляных выключателей.

63. Дугогасительные устройства масляных выключателей.

64. Электромагнитные выключатели. Классификация, устройство и принцип действия, дугогасительная система.

65. Вакуумные выключатели. Классификация, устройство и принцип действия, дугогасительная система.

66. Достоинства и недостатки высоковольтных выключателей.

67. Аварийные режимы и способы защиты электрических цепей и потребителей.

68. Низковольтные и комплексные устройства.

69. Методика выбора контакторов и магнитных пускателей для управления и защиты электрических двигателей.

70. Методика выбора автоматических выключателей для защиты электрических цепей и электроустановок.

73. . Преобразователи частоты

74. Фотоэлектронные аппараты

75. Микропроцессорные аппараты

76. Микроконтроллеры в электроаппаратостроении.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector