Vitasvet-led.ru

Витасвет Лед
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выключатели высоковольтные с разъединителями

Для чего нужны высоковольтные разъединители и каких видов они бывают

Назначение и область применения

Высоковольтный разъединитель – это коммутационный прибор, позволяющий отключить линию с видимым разрывом. Необходимость создания видимого разрыва обусловлена тем, что при использовании вакуумных, масляных или газовых выключателей не всегда есть возможность убедиться в полном разъединении контактов, поскольку обычно они находятся в баке с дугогасящей средой (масло, элегаз, вакуум).

При неисправностях высоковольтных выключателей может произойти так, что две фазы отключились, а третья нет или в другой конфигурации цепь осталась под напряжением. В дальнейшем при проведении работ по ремонту или обслуживанию ЛЭП работники попадут под напряжение.

Поэтому последовательно с выключателем ставят разъединитель. Если его описать простыми словами, то высоковольтный разъединитель – это большой рубильник устройство которого создает разрыв цепи высокого напряжения. Где применяются такие устройства?

Высоковольтные разъединители используют повсеместно на ЛЭП от низкого и среднего напряжения, например, 6 или 10 кВ, до линий с высоким в 750 кВ.

Кроме обеспечения отключения линии с видимым разрывом ВР используют и для коммутации:

  • нейтралей трансформаторов;
  • заземляющих реакторов (если нет КЗ на землю);
  • намагничивающего тока трансформаторов от 6 до 500 кВ;
  • зарядного тока воздушных и кабельных ЛЭП, систем шин и подобного;
  • кольцевых токов (сети 6-10 кВ).

Также допускается коммутация цепей 10 кВ с током до 15 А, а также дистанционное отключение одного из разъединителей 220 кВ и боле, если он зашунтирован хотя бы еще одним разъединителем. Например, при использовании на ПС схемы четырёхугольника.

Основные типы

Для начала рассмотрим, какая существует классификация высоковольтных разъединителей:

  • По характеристикам (номинальному напряжению, току);
  • По расположению (наружные и внутренние);
  • По конструкции.

Конструктивно они также могут отличаться:

  • По числу полюсов;
  • По движению ножа (поворотного, качающегося, рубящего типа);
  • По типу привода (оперативной диэлектрической штангой, рычажной системой, с помощью электричества, пневматики и гидравлики).

Устройство и принцип работы

Высоковольтные разъединители не обладают средствами для гашения дуги, поэтому при отключении под нагрузкой дуга может привести к межфазному КЗ.

На рисунке ниже вы видите высоковольтный разъединитель с рычажным приводом.

Обратите внимание на рисунке два привода – один для разъединения ножей на линии, а другой для управления заземляющими ножами (сверху). В некоторых случаях в одном приводе совмещено два рычага – один для заземляющих, а второй для силовых. При этом они включаются в разные стороны так, что исключается одновременное их включение, как например ПРНЗ, который изображен ниже. Он устанавливается на опоре внизу и соединяется через диэлектрическую тягу с ножами разъединителя.

На видео ниже вы видите, как работает на разрыв разъединитель на ЛЭП 735 кВ, обратите внимание насколько сильная дуга.

Высоковольтные разъединители для наружной установки должны быть более прочными и выдерживать большие механические нагрузки. Например, при размыкании в случае обледенения, на рисунке ниже вы видите такое устройство на опоре 6 кВ, также вы видите тягу снизу от ручного привода.

Для управления электрическим приводом разъединителя используют шкафы управления, их располагают на земле, для коммутации больших устройств требуются большие усилия, поэтому по одному такому шкафу устанавливают на каждый полюс (фазу).

Итак, как устроен высоковольтный разъединитель? Если обобщенно ответить на этот вопрос, то он состоит из:

  1. Рамы.
  2. Изоляторов.
  3. Контактных ножей.
  4. Привода.

На видео ниже наглядно рассмотрена конструкция разъединителя:

Устройство может отличаться в зависимости от разновидности разъединителя.

Прежде чем делать переключения

Переключения делают только после получения соответствующего распоряжения. Сначала проверяют, отключен ли выключатель в этой цепи, далее проводят внешний осмотр изоляторов на наличие трещин и сколов – если они есть операции не производят.

Также проверяют состояние блокирующих устройств и приводов. В случае видимых повреждений, если это возможно, воздействуют на приводы осторожно и с разрешения лица выдавшего распоряжения. Перемычек и шунтирующих коммутационных приборов также быть не должно.

При использовании ручного привода разъединители включают быстрым и уверенным движением, но без удара. Если при приближении токоведущих частей возникает дуга их не отводят назад, чтобы избежать ее удлинения и перекрытия соседних фаз. При полном замыкании контактов дуга исчезнет. Отключение выполнять медленным движением, без рывков. Первое движение – пробное, для проверки целостности тяг. После этого размыкают цепь, если при этом возникает дуга – её быстро включают обратно, и не производят до времени выяснения причин её образования.

Это все, что мы хотели рассказать вам про высоковольтные разъединители. Теперь вы знаете основные типы и виды данных устройств, для чего они предназначены и где используются. Надеемся, предоставленная информация была для вас полезной и интересной!

Как устроены и работают высоковольтные разъединители

Высоковольтные аппараты: как устроены и работают разъединители Среди электрического оборудования высокого напряжения используются различные коммутационные аппараты. Одна из их групп получила название «Разъединители».

Эти конструкции используются для создания такого разрыва в электрической схеме, который не только исключает подачу напряжения, но и должен быть виден визуально.

Дело в том, что за всю многолетнюю историю эксплуатации электроэнергии сложились традиции безопасного ее использования. Отключения электричества выключателями нагрузки со сложными техническими устройствами скрыты от наблюдения. В случае возникновения у них поломок напряжение остается на участке, предназначенном для вывода из работы. Это очень опасно и является прямой предпосылкой для поражения людей электрическим током или выводу электротехнического оборудования из строя.

По этим причинам разъединители монтируют в высоковольтной схеме последовательно с выключателями и, как правило, после них для обеспечения безопасности производства работ.

Для понимания этого процесса представим участок электрической схемы, когда электроэнергия от источника на трансформаторной подстанции №1 передается по линии электропередач, разделенной на 5 рабочих участков к подстанциям №2 и №3.

Допустим, что на участке №3 (выделен красным цветом) возникла необходимость проведения технических работ, требующих по условиям безопасности снятия напряжения.

Для этого потребуется выполнить отключения силовых выключателей:

питающей подстанции №1;

потребляющих подстанций №2 и №3, которые находятся в работе по стороне нижнего напряжения и будут генерировать электроэнергию на линию, включая участок №3, за счет эффекта обратной трансформации.

Читать еще:  Самодельный выключатель с задержкой

При любой неисправности одного из выключателей или ошибочном либо их самопроизвольном несанкционированном включении на рабочем участке №3 появится напряжение, а это недопустимо.

Поэтому в электрическую схему после каждого выключателя смонтирован разъединитель, который дополнительно создает безопасный и видимый разрыв цепи.

Представленная выше картинка выполнена в упрощенном однолинейном исполнении. Однако, на практике высоковольтные линии электропередач используют минимум три фазы. Более точная схема для нашего случая подготовки рабочего участка №3 к техническому обслуживанию будет иметь следующий вид.

На ней каждая фаза «А», «В», «С» линии электропередачи показана своим цветом: желтым, зеленым и красным. На всех подстанциях она разрывается вначале своим выключателем, а затем — разъединителем. Только после этого каждая фаза линии электропередачи для участка №3 заземляется.

На этом рисунке вопрос заземления показан не полностью, а только для демонстрации необходимости его выполнения.

Место расположения разъединителя в схеме определяет его упрощенную конструкцию по сравнению с силовым выключателем нагрузки. Это объясняется тем, что выключатель должен надежно разрывать проходящую через него электроэнергию в нормальном режиме работы и аварийные токи коротких замыканий огромных величин, которые могут возникнуть в непредвиденный момент времени в любом месте участка схемы, защищаемого выключателем.

Такие процессы очень сложные. Они связаны с ионизацией окружающей среды и возникновением мощной электрической дуги, которая может сжечь контакты. Для предотвращения этого явления используют различные технические решения, основанные на применении сред с изоляционными свойствами. Ими наполняют рабочую область выключателя, в которой производится разрыв цепи.

Второе направление борьбы с дугой – это обеспечение максимального быстродействия отключающего механизма. Время его работы сопоставимо со взрывом и происходит примерно за два периода колебания гармоники синусоидального тока.

Столько же времени требуется современным защитам со средствами автоматики для выявления неисправности в схеме и подачи команды на исполнительный элемент выключателя.

Поэтому время отключения аварийных ситуаций защитами и автоматикой составляет порядка 0,04 сек.

Для разъединителей такие сложные устройства не нужны. Они спроектированы для отключения руками оператора или электродвигателями приводов без спешки. Поскольку разъединители устанавливаются после выключателей, то ими оперируют исключительно после снятия напряжения, когда электрической дуги быть не может.

Место расположения разъединителя и выключателя можно посмотреть на фрагменте оперативной схемы диспетчера.

Так выглядит фотография участка этой подстанции, переданная со спутника.

Вид на этот же участок местности с земли со стороны вводной опоры.

Таким образом, разъединителями создают видимый разрыв электрической цепи для ее безопасного технического обслуживания после того, как выключателем нагрузки снято напряжение . Это их основное назначение.

Устройство высоковольтного разъединителя довольно сложное, но в то же время оно намного проще, чем у силового выключателя такого же напряжения. Рассмотрим примеры их исполнения для оборудования 330 кВ.

Единственные токи, которые отключают подобные разъединители — это возможные емкостные разряды, образуемые наведенным напряжением. На разрыв их мощности и рассчитаны силовые контакты разъединителей. В рабочем состоянии через них проходит максимальный ток нагрузки.

Для оперирования каждой фазой разъединителя по отдельности или в комплексе предназначены шкафы управления приводами.

Если внимательно посмотреть на приведенные фотографии, то видно, что коммутационные контакты выключателя и разъединителя расположены на значительной высоте. Это сделано из соображений безопасности для остального оборудования и обслуживающего эксплуатационного персонала.

На ОРУ-110 кВ безопасная высота расположения разъединителя меньше.

Так лучше их обслуживать, проще и дешевле монтировать. Однако, это требует от обслуживающего персонала, находящегося под введенным в работу разъединителем, повышенного внимания. На практике встречались случаи, когда работники в сырую погоду поднимали вверх косу, сокращая безопасное расстояние до электрооборудования и попадая под напряжение 110 кВ.

Это лишний раз подтверждает, что технику безопасности необходимо не только досконально знать, но и безукоризненно выполнять.

Месторасположение разъединителей воздушных ЛЭП 10 кВ на опорах около крытого распределительного устройства с силовыми выключателями подстанции показано на фотографии.

На следующей снимке виден способ управления разъединителем линии 10 кВ с помощью ручного привода. Питающий трансформатор находится рядом.

Разъединители воздушных линий на 6 кВ имеют такое же устройство, как и для линий 10 кВ.

На всех приведенных фотографиях видно, что любой разъединитель состоит из следующих конструктивных элементов:

силовой рамы, размещенной на безопасной высоте;

опорных изоляторов, жестко смонтированных на раме по концам образуемого разрыва для каждой фазы;

контактной системы, обеспечивающей надежное прохождение номинального тока линии и исключающей в разомкнутом состоянии подачу напряжения на участок, выделенный для обслуживания;

системы управления перемещением ножей.

У разъединителей, используемых для цепей с напряжением 110 кВ и выше, контактная система выполнена из двух подвижных полуножей, которые разводятся в противоположные стороны. В остальных конструкциях чаще используется один подвижный нож, вводимый в неподвижно закрепленный контакт.

Разъединители классифицируют по:

характеру установки (внутренней или наружной);

виду движения ножа для создания разрыва цепи (поворотного, рубящего либо качающегося типа);

способам управления: вручную оперативной изоляционной штангой или системой рычагов либо автоматически электродвигателями (может использоваться гидравлика и даже пневматика) с системой управления.

Все операции с разъединителями в работающей схеме относятся к опасным работам, их выполняет только обученный и подготовленный персонал по специально оформленным бланкам под непосредственным контролем диспетчера.

Особенностью высоковольтных разъединителей является то, что вместе с ними на одной платформе часто располагают заземляющие ножи с обеих сторон создаваемого разрыва. Ими удобно манипулировать оперативному персоналу, выполняющему переключения в схемах электроснабжения.

При переключениях важно правильно соблюдать очередность наложения/снятия заземления и включения/вывода из работы разъединителя. Нельзя включать силовой выключатель при установленном заземлении с любой стороны разъединителя. Это приведет к возникновению короткого замыкания.

Также нельзя накладывать заземления при включенном разъединителе и поданном напряжении на схему, что тоже создаст КЗ.

С целью недопущения при переключениях ошибочных ситуаций используется техническая блокировка действий оперативного персонала со стационарными заземлителями, разъединителями и выключателями. Она может быть:

Читать еще:  Принцип выбора автоматического выключателя

электрической (на основе использования электромагнитного замка);

Конструкции блокировок бывают разными. Их сложность и надежность увеличивается с повышением величины напряжения, используемого в первичной схеме.

Для управления электрическими видами блокировок на валах поворота контактных ножей монтируют дополнительные контакты, используемые во вторичных цепях. Их называют блок контактами КСА. Они полностью повторяют положение разъединителя, одновременно с ним замыкаются или размыкаются. С целью расширения возможностей схем управления, защит и автоматики выключателей и линий эти блок контакты создают как с нормально открытым, так и закрытым положением.

На приводах стационарных заземляющих ножей и выключателей нагрузки тоже монтируются аналогичные блок контакты.

Схемы управления электромагнитной блокировкой построены на принципе создания последовательных и параллельных цепочек электрических схем из контактов повторителей положения первичного оборудования: выключателей, разъединителей, заземляющих ножей.

Когда положение одного из этих коммутационных аппаратов изменяется оперативным персоналом, то соответственно происходит переключение их вторичных контактов, собранных по определенной логической схеме. Если при этом нарушаются требования безопасности, то электромагнитная блокировка запрещает дальнейшие действия с силовым оборудованием.

В этом случае необходимо разбираться с правильностью выполненных действий и искать допущенную ошибку.

Схемы оперативной блокировки разъединителей на подстанциях питаются от специальных источников напряжения постоянного тока.

Обязательные требования к разъединителям:

обеспечение видимого разрыва;

устойчивость конструкции к динамическому и термическому воздействию;

надежность изоляции при любых атмосферных явлениях;

четкость работы при ухудшении условий эксплуатации в дождь, снегопад, образованиях наледи;

простота конструкции, обеспечивающая удобство эксплуатации и обслуживания.

Более подробно эксплуатационные характеристики разъединителей изложены в этой статье.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Высоковольтные разъединители: назначение, устройство, классификация

С целью обеспечения максимальной степени безопасности во время выполнения работ по обслуживанию высоковольтных линий электропередач и связанного с ними оборудования, требуются надёжные коммутационные приборы. В частности, для безопасного доступа к распределительным устройствам и к другому оборудованию, работающему под высоким напряжением, применяются высоковольтные разъединители открытого типа.

Назначение и где применяются

Использование разъединителей в энергетике для разрывов цепей продиктовано, в первую очередь, соображениями безопасности. Их применяют для выполнения подключений контактных сетей для запитки током от питающих линий. Эти механизмы также служат для безопасного изменения схем соединений участков цепей.

На рисунке 1 изображён участок линии с высоковольтными разъединяющими устройствами.

Рисунок 1. Участок линии с высоковольтными разъединителями

Рассматриваемые коммутационные механизмы обладают двумя важными качествами, позволяющими контролировать процесс коммутации:

  1. Возможностью визуального наблюдения за положением подвижных контактов в местах разъединения.
  2. Отсутствием механизма, допускающего вероятность свободного (произвольного) расцепления. Применение ручных приводов гарантирует выполнение специалистом запланированной операции по обесточиванию или подключению электрической сети в нужный момент.

Такая конструкция разъединителя позволяет обслуживающему персоналу быстро оценивать состояние рабочих частей механизма коммутации перед включениями, а также визуально контролировать положение контактных ножей в конкретной ситуации. Разъединители всегда работают с использованием высоковольтных выключателей, как на открытом пространстве, так и в закрытых помещениях.

Допускается коммутация такими приборами трансформаторов, работающих на холостом ходу, а также для отключения линий с циркулирующими токами наводки. При наличии соответствующих шунтирующих устройств можно разъединять электрические цепи, находящиеся под током или отключать маломощные токи нагрузки трансформаторов. При этом всегда наблюдается дуговой разряд на начальной стадии отключения или перед включением, когда контакты приблизятся на расстояние пробоя.

Время горения дуги сокращает наличие контактных пружин. Исключение составляет класс выключателей нагрузки, в конструкции которых предусмотрены автогазовые дугогасительные устройства – ВНА. Такие выключатели могут использоваться в качестве высоковольтных разъединителей, которые применяются для коммутации участков цепей до 10 кВ. (Рис. 2).

Рисунок 2. Высоковольтный выключатель нагрузки ВНА

Основные области применения

Разъединители высоковольтных цепей используются во многих областях. С их помощью обслуживают:

  • сети комплектных трансформаторных подстанций, в том числе и передвижные КТП;
  • семейство комплектных распределительных устройств КРУ и КРУН;
  • конденсаторные установки;
  • камеры сборные, предназначенные для одностороннего обслуживания;
  • ГРЩ, шкафы ввода и распределения и другое оборудование.

Способность трёхполюсных и однополюсных разъединителей коммутировать зарядные токи воздушных проводов и кабельных линий, включать и отключать индукционные токи силовых трансформаторов, отсекать уравнительные токи, разъединять цепи с небольшими токами нагрузки делает эти приборы незаменимыми в различных энергосистемах.

Сферы применения высоковольтных разъединителей регламентируют ПТЭЭП. Правила разрешают их использование в сетях на 6 – 10 кВ, для включения либо отключения нагрузочных токов до 15 А или до 70 А уравнительных.

Устройство и принцип работы

Создание высоковольтного разъединителя вызвано потребностью в коммутационном механизме, способном обеспечивать безопасный и визуально наблюдаемый разрыв высоковольтных цепей, находящихся под напряжением. В основе конструкции такого прибора заложена высокая надёжность контактов, обеспечивающих замыкание и размыкание цепи при любых погодных условиях.

В конструкции высоковольтного разъединителя не предусмотрено наличие искрогасящих элементов. Поэтому с целью недопущения образования электрической дуги большой мощности способной разрушить контакты, устройства подключаются последовательно с высоковольтными выключателями нагрузки. Перед тем, как отсоединить нужную линию, с помощью выключателя отключают нагрузку.

Конструкция разъединителя состоит из жёсткой силовой рамы, на которой смонтированы следующие элементы:

  • система неподвижных изоляторов, расположенных с каждой стороны разрыва, для каждого фазного провода;
  • статичные контакты и контактные ножи, обеспечивающие замыкания и размыкания цепи;
  • механизм управления подвижными контактами (ножами);
  • блокирующие элементы.

Разъединители, предназначенные для коммутации цепей, напряжение которых превышает 110 000 В, состоят из двух контактных подвижных полуножей, разводимых в противоположных направлениях. Расстояние между разведёнными контактами достаточно большое, что исключает пробой этого пространства в случаях несанкционированного включения выключателя.

В зависимости от предназначения рассматриваемые приборы могут быть трёхполюсными или однополюсными. В трехполюсных разъединителях есть три пары контактов. В однополюсном разъединителе – только одна пара: неподвижный контакт и его замыкатель – контактный нож.

Читать еще:  Как прикрутить розетку с выключателем

Пример трёхполюсного разъединителя показан на рисунке 3.

Рисунок 3. Трёхполюсный РВ с вертикальным поворотом ножей

Несмотря на то, что РВ работают при отключенной нагрузке, вероятность наличия опасных наведённых или ёмкостных токов не исключена. С целью обеспечения полной безопасности для персонала используются ножи заземления, которые крепятся на одной платформе и могут выполнять предназначенную им защитную функцию лишь после отключения выключателя нагрузки и расцепления контактов, соединяющих обслуживаемый участок с токоведущей линией. В противном случае возникает короткое замыкание между заземлёнными проводами.

С целью исключения КЗ, спровоцированного заземляющими ножами в результате случайной подачи номинальных токов, многие модели оборудованы блокирующими механизмами. Механизмы блокируют движение ножей при неснятом заземляющем устройстве или при включенной нагрузке. Чаще всего используют механическую блокировку, но существуют и электромагнитные, и даже гидравлические блокировочные механизмы. Существуют модели с комбинированными блокирующими элементами.

Принцип работы

Соединение или разъединение коммутируемой электрической цепи обеспечивается поворотом контактных ножей. В зависимости от конструктивного исполнения подвижные контакты могут поворачиваться вертикально либо горизонтально. Приводом, сообщающим усилие поворотному механизму, служит штанга с рукоятью, с помощью которой оператор осуществляет управление контактными ножами. Рукоятки приводов, смонтированы непосредственно на опорах под разъединителем.

Ручное управление используются преимущественно на воздушных линиях до 6 кВ. Управление ножами на линиях 110 кВ и выше осуществляется электроприводами, с использованием металлических шкафов, размещённых на безопасном расстоянии.

Классификация

Отечественной промышленностью выпускаются высоковольтные разъединители разных типов. Их можно классифицировать по следующим признакам:

  • по количеству полюсов;
  • типу контактного ножа (поворотного, рубящего, качающегося);
  • месту установки (открытое пространство или помещение);
  • по способу управления: ручной (посредством изоляционной штанги или рычагов), электромеханический, гидравлический, пневматический.

Кроме того устройства различаются по номинальному напряжению и показателям номинального тока, на который они рассчитаны. Изделия бывают с заземлителями (разъединители РВЗ, рис. 4), с фигурными ножами (РВФ) и другие.

Рисунок 4. РВФз 1063

Тип прибора можно определить по его обозначению.

Буквами обозначают:

  • Р – тип изделия, в данном случае разъединитель;
  • Н – наружный;
  • Г – горизонтальная установка;
  • Л – линейный;
  • З – разъединитель с заземляющими ножами. Цифрами 1, 2 … указывают количество заземлителей;
  • Д – с двумя опорно-изоляционными колонками;
  • Числа 10, 35, 110, 220 – означают номинальное напряжение в киловольтах.

Например, РВ – внутренний разъединитель, а аббревиатура РЛНД означает, что перед вами линейный тип прибора с двумя опорно-изоляционными колонками, для наружного использования.

Предъявляемые требования

Главным требованием ко всем высоковольтным разъединителям является такая конструкция, которая предусматривает такое отключение, когда хорошо виден разрыв цепи. На приборы, применяемые для расцепления линий свыше 1 кВ распространяются требования ГОСТ Р 52726-2007, предусматривающие:

  • термическую и электродинамическую устойчивость конструкции;
  • высокое качество изоляции, способной работать в различных атмосферных условиях и выдерживать всевозможные перенапряжения;
  • уверенное включение или отключение при всех допустимых условиях, включая обледенение элементов конструкции;
  • простота конструкции, обеспечивающая надежность разъединения, удобство монтажа и эксплуатации.

Отдельные требования распространяются на соблюдение особенностей установки, правил эксплуатации и профилактических мер по поддержанию разъединителей в актуальном состоянии.

1.3 Высоковольтные выключатели и разъединители

Основные типы выключателей, их принципы действия и устройство. Возникновение электрической дуги в отключающих аппаратах. Принципы гашения дуги. Механизм газового дутья. Дугогасящие устройства с магнитным дутьём. Дугогасительные камеры, их назначение, классификация и принцип действия. Дугогасительные камеры с узкой цепью и с делением дуги на ряд коротких дуг. Конструкции масляных, воздушных и элегазовых выключателей. Электромагнитные, вакуумные и силовые выключатели. Автогазовые выключатели. Отключающая способность выключателей, условия выбора выключателей. Приводы выключателей. Высоковольтные предохранители.

Отключение цепей постоянного тока. Особенности выполнения выключателей постоянного тока и гашения дуги в них.

Восстанавливающееся напряжение. Зависимость отключающей способности выключателей от восстанавливающегося напряжения. Отключение неудалённых коротких замыканий. Особенности отключения малых индуктивных и емкостных токов.

Способы повышения отключающей способности выключателей.

Назначение разъединителей. Конструкция разъединителей рубящего, катящегося и качающегося типов. Поворотные, подвесные и пантографические разъединители. Повышение надёжности работы разъединителей при коротких замыканиях.

Отделители и короткозамыкатели, их назначение. Приводы разъединителей, отделителей и короткозамыкателей. Выбор разъединителей, отделителей и короткозамыкателей.

Литература: [1-3, 5, 7].

Методические указания

При проработке данной темы необходимо ознакомиться с классификацией выключателей, принципами гашения дуги, конструктивными особенностями выключателей различных типов. Особое внимание следует обратить на работу дугогасительных устройств и отключение малых индуктивных и емкостных токов.

Рассмотреть конструктивное исполнение разъединителей. Обратить внимание на возможность отключения разъединителями небольших токов, что позволяет отказаться от использования дорогих выключателей.

Вопросы для самопроверки

1. Назовите способы гашения дуги в отключающих аппаратах.

2. Назначение масла в многообъёмных и малообъёмных масляных выключателях.

3. Чем определяется уровень масла в выключателе?

4. Назовите типы воздушных выключателей.

5. Как подготавливается сжатый воздух для выключателей?

6. В чём сходство и различие выключателей нагрузки и обычных выключателей?

7. Назначение разъединителей в электроустановках.

8. Почему может произойти самопроизвольное отключение разъединителя и как его предотвратить?

9. Почему короткозамыкатель устанавливается на напряжение 35 кВ в двух фазах, а на 110 кВ – в одной?

10. В чём заключается токоограничивающая способность предохранителей?

11. Что такое стреляющий предохранитель?

12. Для какого времени должен быть определён ток КЗ при выборе выключателя по отключающей способности?

13. Какой вид короткого замыкания применяется в качестве расчётного при проверке аппаратов на динамическую и термическую стойкость?

14. Как устроен магнитный замок разъединителя?

15. Назначение заземляющих ножей разъединителей.

16. Каково различие в конструктивном исполнении и назначении короткозамыкателей и заземляющих ножей разъединителей?

17. Назначение шунтирующих резисторов высоковольтных выключателей.

18. Какими показателями характеризуется процесс восстановления напряжения при отключении цепи высоковольтным выключателем?

19. Чем определяется характер восстановления напряжения (апериодический или колебательный) на контактах выключателя?

20. Какова причина возникновения перенапряжений при отключении малых индуктивных и емкостных токов высоковольтными выключателями?

21. Что представляют собой нормированные характеристики восстанавливающегося напряжения высоковольтных выключателей?

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector