Vitasvet-led.ru

Витасвет Лед
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиод сгорает от напряжения или тока

Перегорают светодиоды? Делаем простейший драйвер своими руками.

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

Львиной долей нубов используется линейный стабилизатор напряжения L7812CV и его аналоги КРЕН, что, естественно, никакого толка не даёт и светики горят, как ни в чем не бывало 🙂

Вот он, виновник торжества.

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди, которые слишком мало копали, прежде, чем что-то сделать…

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

«Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.»

Теперь понятно, почему со стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это токоограничивающими резисторами или линейными/импульсными стабилизаторами ТОКА!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
КАК ЭТО ДЕЛАТЬ, СМОТРИМ ТУТ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

-Резистор, который посчитали выше

И подключаем это всё дело в режиме токового стабилизатора.

В итоге получили на выходе стабилизированный ток.
Но это для идеального случая. Что касается случая с реальным автомобилем, где скачки до 14 Вольт с копейками бывают, то рассчитывайте резистор для худшего случая с запасом.

Кто не могёт паять по схемам, то даю картинку, где все нарисовано более наглядно

Вот собственно и все. Надеюсь, кому-нибудь пригодится)

Светодиод сгорает от напряжения или тока

LM317 в стабилизаторе тока светодиодов.

или как надежно запитать светодиоды чтобы горели и не сгорали.

Пройдет еще 5-10 лет и твердотельные источники света вытеснят все остальные.

В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут . часа 2-3. Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Читать еще:  Как правильно подключить двухклавишный выключатель света

Значить как сделать самый простой стабилизатор тока?

Для этого берем LM317 если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А. Даташит можно скачать здесь!


Т
ак выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем. а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 вольта (это если Adjust «посадить» прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться. На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда)Сопротивление резистораПримечание
20 мА62 Омстандартный светодиод
30 мА (29)43 Ом«суперфлюкс» и ему подобные
40 мА (38)33 Ом
80 мА (78)16 Омчетырехкристальные
350 мА (321)3,9 Омодноватные
750 мА (694)1,8 Омтрехватные
1000 мА (962)1,3 Ом5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг. ).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в «обратке» (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LM ка потребует радиатор.

наша схема, удачи Вам!

Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Краткое описание у схеме рис.1

Количество светодиодов в цепочки надо выбирать с учетом вашего рабочего напряжения минут падения напряжения на стабилитроне минус на диоде.

Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание 20 мАм это рабочий ток для ФИРМЕННЫХ дорогих светодиодов. Только фирменные гарантирует такой ток, поэтому если вы не знаете точного происхождения выбирайте ток в районе 14-15 мАм. Это для того, что бы потом не удивляться почему так быстро упала яркость или вообще почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому, то что к нам завозят не всегда то, что маркировано на изделии.

Вопрос 1 — сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 вольта. Падение на диоде 0,6. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 вольта. Для автомобиля минимальное напряжение в сети 12,6 — это нормально.

Для белых светодиодов на 20 мАм можно включать 3 шт, для сети 12,6 вольта. Учитывая, что при включенном двигателе нормально рабочее напряжение сети 13,6 вольта (это номинальное, в других вариантах может быть и выше. ), а рабочее LM317 до 37 вольт у нас все в норме.

Вопрос 2 — как рассчитать сопротивление резистора задающего ток! Хоты выше и было описано, вопрос задают постоянно.

где R1 — сопротивление токозадающего резистора в Омах.

1,25 — опорное (минимальное напряжение стабилизации) LM317

Ist — ток стабилизации в Амперах.

Нам нуден ток в 20 мАм — переводим в амперы = 0,02 Ам.

Вычисляем R1 = 1,25 / 0,02 = 62,5 Ома. Принимаем ближайшее значение 62 Ома.

Еще пару слов о групповом включении светодиодов.

Идеальное это последовательное включение со стабилизацией тока.

Светодиоды — это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают в монтируя в изделие защитный диод).

Читать еще:  Защита осветительных сетей от токов перегрузки

если необходимо подключить массив из светодиодов, то рекомендую такую схему включения

Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.

Как рассчитать значение гасящего резистора для светодиода. Расчет проводиться по закону Ома.

Ток в цепи равен напряжение разделить на сопротивление цепи.

I led = V pit / на сопротивление диода и резистора.

сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падения на напряжения на светодиоде.

Для маломощных светодиодов ток 20 мАм необходимо принимать

Тип светодиодаРабочее напряжение (падение на светодиоде)
Инфракрасный1,6-1,8
Красный1,8-2,0
Желтый (зеленый)2,0-2,2
Зеленый3,0-3,2
Синий3,0-3,2
Ультрафиолетовый3,1-3,2
Белый3,0-3,1

Зная падения на на светодиоде можно вычислить остаток на напряжения на резисторе.

Например. Питающее напряжение V pit = 9 вольт. Мы подключаем 1 белый светодиод падение на нем 3,1 вольт. Напряжение на резисторе будет = 9 — 3,1 = 5,9 Вольта.

Вычисляем сопротивление резистора

R1 = 5.9 / 0.02 = 295 Ом.

Берем резистор с близким более высоким сопротивлением 300 ом.

Для получения дополнительной информации используйте:

Что произойдет, если светодиод подключен к напряжению питания, превышающему падение напряжения?

Мое понимание сопротивления и напряжения ужасно. Я слышал, что по закону Кирхгофа (по моим словам, пожалуйста, исправьте) напряжение, используемое схемой, должно равняться подаваемому напряжению. Например, если у меня была батарея 9 В, я должен использовать все 9 В.

Допустим, у меня есть светодиод с типичным напряжением прямого смещения 3,1 В, что означает, что он теряет 3,1 В при генерации света. Сгорит ли светодиод, если используется 9 В?

Скорее всего, это правда, но хороший пример действительно сделает мое понимание более интуитивным.

Это одна из тех ситуаций, когда ваша проблема не в том, насколько вы хороши в анализе или какие базовые знания у вас есть, а просто в том, что вы не знаете, чего не знаете. Это всегда делает первый шаг в электронике очень высоким.

В случае вашего примера, что вы не знаете о батарее?

  1. Напряжение на клеммах идеальной батареи никогда не изменится (по крайней мере, пока не будет использована вся емкость накопления энергии). Таким образом, должны быть факторы, которые влияют на напряжение терминала и его полезную энергетическую емкость. Краткий список — химия, объем материалов, температура и конструкция анода / катода.
  2. Практическая батарея имеет ограниченную емкость, и многие другие факторы, влияющие на напряжение на клеммах и потенциальный ток, могут быть объединены в элемент модели под названием «Внутреннее сопротивление». В модели для большинства более крупных батарей это будет доли ома. Однако батарея также имеет другие элементы, такие как емкость и индуктивность, чтобы сделать ситуацию более сложной. Вы можете начать с чтения моделей батарей с такими текстами, как этот .

Отличным примером большой батареи с очень маленьким внутренним сопротивлением является автомобильный аккумулятор 12 В. Здесь, когда вы заводите автомобиль, для переключения двигателя требуются сотни ампер (кВт мощности и тока в диапазоне 600 А), и напряжение на клеммах может упасть с 13,8 В (полностью заряженная свинцово-кислотная автомобильная батарея) до 10 В при запуске. Таким образом, внутреннее сопротивление может быть (используя закон Ома) всего 6 миллиом или около того.
Вы можете масштабировать мышление для этого примера на меньшие батареи, такие как батареи AA, AAA и C, и, по крайней мере, начать понимать сложность батареи.

Теперь, что вы не знаете о светодиоде?

  1. Сложность электрической модели для диода (будь то выпрямитель или светодиод) огромна. Но мы могли бы упростить это здесь и сказать, что в самом простом случае вы можете изобразить диод его напряжением запрещенной зоны с последовательным резистором. Вы можете начать с изучения множества пакетов SPICE, и это обсуждение StackExchange может стать хорошей отправной точкой.
  2. Все полупроводниковые устройства имеют практическое ограничение на количество энергии, которое они могут рассеивать. Это связано, прежде всего, с физическими размерами устройства. Чем больше устройство, тем больше энергии оно может рассеивать.

Теперь вы можете рассмотреть свой светодиод. Вы должны начать, пытаясь понять таблицу данных для устройства. Хотя многие характеристики, которые вы не поймете, вы уже знаете одно (из вашего вопроса), прямое напряжение (Vf) и вы, возможно, найдете предел тока и максимальную рассеиваемую мощность в техническом описании.
Вооружившись этими, вы сможете определить последовательное сопротивление, необходимое для ограничения тока, чтобы не превышать предел рассеиваемой мощности светодиода.

Закон напряжения Кирхгофа дает вам большой намек на то, что, поскольку напряжение на светодиоде составляет около 3,1 В (а кривая тока в техническом описании показывает, что вы никогда не сможете подать 9 В), вам необходим еще один компонент с сосредоточенными компонентами в цепи.

Примечание: внутренний импеданс батареи, показанный выше, просто указан для упрощения расчетов. В зависимости от типа батареи (первичной или перезаряжаемой) внутреннее сопротивление может варьироваться. Проверьте свой паспорт батареи.

Может ли неизвестный элемент выше просто быть частью провода (без элемента)?
Это может . но мы можем легко рассчитать результаты.
При двух идеальных элементах напряжения (9 В и 3,1 В) резисторы должны иметь напряжение 5,9 В (петля напряжения Кирхгофа). Следовательно, ток должен составлять 5,9 / 10,1 = 584 мА.
Мощность, рассеиваемая в светодиоде, составляет (3,1 * 0,584) + (0,584 ^ 2 * 10) = 5,2 Вт. Поскольку ваш светодиод, вероятно, рассчитан всего на 300 мВт или около того, вы можете видеть, что он сильно нагревается и, по всей вероятности, выйдет из строя в течение нескольких секунд.

Читать еще:  Как соединить световые провода

Теперь, если неизвестный элемент представляет собой простой резистор, и мы хотим, чтобы ток через светодиод был, скажем, 20 мА, у нас достаточно для вычисления значения.

Напряжение на клеммах батареи будет (9 — (0,02 * 0,1)) = 8,998 В Напряжение на клеммах светодиода будет (3,1 + (0,02 * 10)) = 3,3 В

Таким образом, напряжение на неизвестном резисторе составляет 5,698, а ток через него 20 мА. Таким образом, резистор составляет 5,698 / 0,02 = 284,9 Ом.

В этих условиях напряжение в контуре уравновешивается, и светодиод передает свое расчетное значение 20 мА. Следовательно, его рассеиваемая мощность ((3,3 * 0,02) + (0,02 ^ 2 * 10)) = 70 мВт . возможно, в пределах возможностей маленького светодиода.

Калькулятор светодиодов

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье «Драйвера для светодиодов», готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I 2 R , где P — выделяемое тепло в ваттах, I — сила тока в цепи в амперах, R — сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U — UL) / I , где R — требуемое сопротивление в омах, U — напряжение источника питания, UL — падение напряжения на светодиоде в вольтах, I — нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector