Vitasvet-led.ru

Витасвет Лед
54 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Емкостный ток кабельной линии формула

Емкостный ток кабельной линии формула

Релейная защита

В последнее время в России все большее распространение получают сети 6–10 кВ с низкоомным резистивным заземлением нейтрали. Особенностью данных сетей является действие защиты от однофазных замыканий на землю поврежденного фидера на отключение.
Сложность эксплуатации заключается в определении тока срабатывания защит от замыкания на землю и обеспечении требуемой селективности работы защит. Свои предложения высказывают наши авторы из Республики Коми.

ОДНОФАЗНЫЕ ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6–10 кВ
С РЕЗИСТИВНО-ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ
Расчет уставок релейной защиты

Евгений Демиденко, начальник отдела ЭТО ИТЦ
Алексей Солончев, ведущий инженер отдела ЭТО ИТЦ
Виктор Гудым, ведущий инженер ГПТО ИТЦ
ООО «Газпром трансгаз Ухта»,
г. Ухта

ОПРЕДЕЛЕНИЕ ТОКА СРАБАТЫВАНИЯ ЗАЩИТЫ ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Рассмотрим схему сети 10 кВ (рис. 1), особенностью которой является наличие электростанции собственных нужд (ЭСН) 10 кВ, работающей параллельно с энергосистемой, что влечет за собой необходимость скорейшей ликвидации однофазных замыканий в сети и, как следствие, перенапряжений, особенно опасных для изоляции электрических машин.

Рис. 1. Пример схемы сети 10 кВ

В нормальном режиме работы в ЗРУ-1 включены только один ввод от энергосистемы (в нашем случае это ввод-1, яч. № 1), секционный выключатель (СВ) 10 кВ, трансформатор заземления нейтрали (ТЗН). Потребители ЗРУ-2 получают питание по ВЛ 10 кВ № 1, 2; СВ 10 кВ ЗРУ-2 отключен.

Также от шин ЗРУ-1 отходит ВЛ 10 кВ № 4 протяженностью 52 км, имеющая кабельные вставки общей протяженностью 3 км (2,6 км – кабельная линия типа СКл-3х150 и 0,4 км – NXCMK-3х150) и 4 выключателя, установленных в линии и равномерно удаленных (около 10 км) друг от друга.

К шинам 10 кВ ЗРУ-1 и ЗРУ-2 подключены трансформаторные подстанции с трансформаторами мощностью 400–1000 кВА (от 4 до 10 присоединений на секцию) и суммарной длиной кабельных линий 3,2 км для 1-й и 2-й секций шин (СШ) ЗРУ-1; 4,85 км и 4,45 км соответственно для 1-й и 2-й СШ ЗРУ-2.

Релейная защита и автоматика (РЗиА) всех электроустановок выполнена на цифровых терминалах релейной защиты и автоматики (ЦРЗА).

ЕМКОСТНЫЕ ТОКИ

Емкостные токи воздушных линий присоединений рассчитываем по формуле из [1]:

где С – удельная емкость ЛЭП на землю (Ф/км) для ВЛ с изолированными проводами типа СИП-3, расположенными на опоре по вершинам равностороннего треугольника при расстоянии между фазами 400 мм (принимаем 0,024 мкФ/км);
л – длина ВЛ, км;
ω = 314 рад/с;
U ф.ном – номинальное фазное напряжение сети, В (принимаем 5700 В).

Емкостные токи кабельных линий присоединений I скл определяем по формуле:

где I С0кл – удельный емкостный ток кабельной линии на землю, А/км (по данным завода-изготовителя [2], для КЛ сечением 150 мм 2 он составляет 2 А/км, сечением 95 мм 2 – 1,7 А/км, сечением 70 мм 2 – 1,5 А/км.

Для КЛ типа СКл-3х150 удельный емкостный ток составляет 2,94 А/км).

Собственные емкостные токи присоединений ЗРУ-1 составляют:

  • для ВЛ 10 кВ № 1 – 8,13 А;
  • для ВЛ 10 кВ № 2 – 7,525 А;
  • для ВЛ 10 кВ № 3 – 2,65 А;
  • для ВЛ 10 кВ № 4 – 10,55 А;
  • для присоединения ЗРУ-1, кроме ВЛ 10 кВ № 1, 2, 3, 4, – 4,8 А.

ОПЫТ ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ

Так как расчет однофазных токов замыкания на землю произведен по эмпирическим формулам и носит приблизительный характер, в представленной сети 10 кВ был выполнен опыт однофазного замыкания на землю.

В табл. 1 представлены расчетные и измеренные величины однофазных токов замыкания на землю в рассматриваемой сети.

Таблица 1. Расчетные и измеренные величины однофазных токов замыкания на землю

ВЛ 10 кВ № 1
Наименование присоединенияРасчетный емкостный ток, АИзмеренный емкостный ток, АРазница между расчетными и измеренными токами, %
8,138,848
ВЛ 10 кВ № 27,5258,198
ВЛ 10 кВ № 32,652,774
ВЛ 10 кВ № 410,557,4130

Исходя из характеристик устройства частичного заземления нейтрали трансформатора [3], принимаем, что ток однофазного замыкания в сети с ТЗН составляет порядка 35–40 А.

Токи срабатывания защит рассчитываем, исходя из отстройки защит от собственного емкостного тока присоединения, по формуле из [4]:

где kотс – коэффициент отстройки (принимаем равным 1,3 для ЦРЗА);
I с – собственный емкостный ток присоединения.

Коэффициент отстройки (kотс) включает в себя коэффициент надежности (kн) и коэффициент отстройки от бросков емкостного тока в переходных процессах (kбр) [5]. При анализе осциллограмм и переходных процессов токов ОЗЗ в ЦРЗА (в качестве ЦРЗА применены SEPAM) коэффициент отстройки от бросков емкостного тока (kбр) можно принять за 1 и не учитывать при расчете токов срабатывания защит.

ТЗН обеспечивает определенную фиксированную величину тока замыкания на землю в точке замыкания независимо от параметров сети, а отстройка защиты фидеров выполняется от собственных емкостных токов присоединений, протекающих в ТТНП неповрежденных присоединений при однофазном замыкании в сети.

СОГЛАСОВАНИЕ ЗАЩИТ ПО ТОКУ С НИЖЕСТОЯЩИМИ ЗАЩИТАМИ

Для ВЛ 10 кВ № 1 и № 2 при расчете уставки срабатывания по току учитываем суммарный емкостный ток обоих присоединений, так как ЗРУ-2 может получать питание по одной линии с включенным СВ 10 кВ ЗРУ-2. Данные расчетов токов и уставок сведены в табл. 2.

Таблица 2. Данные расчетов токов и уставок

ВЛ 10 кВ № 1 (включен СВ 10 кВ ЗРУ-2 и отключена ВЛ № 2)
Наименование присоединенияЕмкостный ток, I с, А (измеренный)Ток срабатывания защиты, I с.з, АКоэффициент чувствительности защит kч к току замыкания 35 А
17,0322,141,58
ВЛ 10 кВ № 2 (включен СВ 10 кВ ЗРУ-2 и отключена ВЛ № 1)17,0322,141,58
ВЛ 10 кВ № 32,773,69,7
ВЛ 10 кВ № 47,419,63,6

Для отходящих кабельных линий 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 отстраиваем ток срабатывания ОЗЗ от емкостного тока самой длинной линии 10 кВ и принимаем равным 3 А. При этом необходимо учитывать возможный ток небаланса в токовых цепях защит. Так как оценить токи небаланса и отстроиться от них расчетными методами не представляется возможным, то при каждом ложном срабатывании защиты необходимо проанализировать причины работы защиты от ОЗЗ и выполнить изменения токов срабатывания или выявить ошибки в монтаже ТТ защит от ОЗЗ.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СРАБАТЫВАНИЯ ЗАЩИТ ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Для выполнения условий селективности работы защит от ОЗЗ было выполнено согласование по времени.

На отходящих линиях 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 время работы защиты принимаем равным 0,1 сек.

Для ВЛ 10 кВ № 1,2 время срабатывания защиты от ОЗЗ рассчитываем, исходя из рекомендованной для микропроцессорных защит ступени селективности Δt = 0,25 сек. Время срабатывания защиты от ОЗЗ для ВЛ 10 кВ № 1, 2 составит 0,35 сек.

Для ВЛ 10 кВ № 3, с учетом обеспечения селективности действия защит (в пределах 0,25–0,35 сек.) на 4-х выключателях, установленных на линии, время срабатывания защиты от ОЗЗ принимаем равным 1,1 сек.

ПАРАМЕТРЫ И ЗАЩИТЫ ТРАНСФОРМАТОРОВ РЕЗИСТИВНОГО ЗАЗЕМЛЕНИЯ НЕЙТРАЛИ

Для резистивного заземления нейтрали применен шкаф типа КУН-70М со следующими характеристиками [6]:

  • номинальная мощность трансформатора 63 кВА;
  • активное сопротивление блока резисторов 150 Ом;
  • номинальная мощность блока резисторов 21 кВт;
  • допустимые токи при однофазном замыкании на землю не более 3 А длительно, 5 А в течение 3 ч, 40 А в течение 5 сек.
Читать еще:  Сенсорные выключатели для подсветки кухни рабочей зоны

С учетом допустимой длительности 5 сек. протекания тока замыкания на землю величиной в 40 А и согласования по току с защитами отходящих линий, для обеспечения селективности действия защит от ОЗЗ принимаем уставки защит: I с.з = 25 А, Т с.з = 1,4 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Т с.з = 1,7 сек. с действием на отключение своего выключателя.

Карта уставок защит от ОЗЗ представлена на рис. 2.

Рис. 2. Карта уставок защит от ОЗЗ

ОРГАНИЗАЦИЯ ЗАЩИТ ОТ ОЗЗ ПРИ НЕДОСТАТОЧНОЙ ЧУВСТВИТЕЛЬНОСТИ

При больших собственных емкостных токах замыкания на землю присоединений могут возникнуть проблемы с обеспечением чувствительности защит к токам ОЗЗ. Из данного положения можно выйти, согласовав работу защит по времени срабатывания, при этом не ставя перед собой задачу отстройки защит от емкостных токов своих присоединений.

Допустим, что защиты от ОЗЗ ВЛ № 1, 2 не могут быть отстроены от емкостных токов своих присоединений по условию чувствительности к току замыкания (kч Т с.з = 1,1 сек.

Исходя из вышеизложенного, принимаем время срабатывания защит от ОЗЗ ВЛ № 1, 2: Т с.з = 1,4 сек., а время срабатывания защиты от ОЗЗ трансформатора заземления нейтрали увеличиваем соответственно до Т с.з = 1,7 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Т с.з = 2,0 сек. с действием на отключение своего выключателя.

Если по каким-либо причинам нет возможности увеличить время работы защит от ОЗЗ, то необходимо применять направленные защиты от ОЗЗ. При этом особое внимание следует уделить качеству и правильности монтажа ТТНП, так как проблематично проверить фазировку защиты первичными токами и напряжением. Если есть сомнение в правильности фазировки защиты от ОЗЗ, то необходимо провести опыт однофазного замыкания на землю.

ВЫВОДЫ

  1. При расчете величин токов однофазного замыкания на землю необходимо иметь полные данные о рассчитываемой сети. При сомнениях нужно провести опыт ОЗЗ для определения реальных токов ОЗЗ присоединений сети.
  2. Требуется уделять особое внимание монтажу ТТНП. Монтаж следует выполнять в полном соответствии с указаниями производителя.
  3. Максимальное время срабатывания защит от ОЗЗ зависит от времени допустимого действия токов замыкания шкафов резистивного заземления нейтрали.

ЛИТЕРАТУРА

  1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6–10 кВ: Библиотечка электротехника. Приложение к журналу «Энергетик» за 2001 г.
  2. Кабели с изоляцией из сшитого полиэтилена на напряжение 6–35 кВ Nexans. Технические характеристики.
  3. Абрамович Б.Н., Гульков В.М., Полищук В.В., Сергеев А.М., Шийко А.П. Расчет и проектирование воздушных линий с покрытыми изоляционными проводами. Изд-во «Нестор», 2003.
  4. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. СПб.: ПЭИПК, 2010.
  5. Булычев А.В. Релейная защита в распределительных электрических сетях. М.: ЭНАС, 2011.
  6. Шкаф резистивного заземления нейтрали КУН-70. Руководство по эксплуатации.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Большая Энциклопедия Нефти и Газа

Емкостный ток — линия

Из графика видно, что при напряжениях, превышающих номинальное, намагничивающий ток становится соизмеримым с емкостным током линии , и ток через предвключенную индуктивность уменьшается. [32]

Через место замыкания на землю проходят ток катушки и ток замыкания на землю, который складывается из емкостного тока линии и активной составляющей 3t / j g /, обусловленной утечками по изоляторам и потерями на корону в воздушных линиях, диэлектрическими потерями в кабельных линиях. [34]

В ф-ле ( 22) обозначено: / 2 — ток конца линии в А, 1С — емкостный ток линии в А, который подсчитывается по номинальному напряжению линии, cos ( рг — коэфициент мощности нагрузки в конце линии. [35]

В связи с созданием объединенных энергетических систем, увеличением мощностей, протяженностей и напряжений электропередачи стали существенны потери, вызванные протеканием емкостных токов линий . Так, для линии 500 кв длиной 800 км емкостная ( зарядная) мощность линии составляет около 800 Мв-а, для линии 750 / се той же длины-1800 Мв а, для линии 1150кв тойжедлины — 4600 Мв а. Величины эти соизмеримы с потоками активной мощности, протекающими по таким же линиям. [36]

Приведенная векторная диаграмма линии передачи и формулы ( 10 — 10) и ( 10 — 10а) наглядно показывают влияние емкостного тока линии и зарядной мощности на изменение напряжения, тока и коэффициента мощности в начале линии в зависимости от изменения нагрузки, присоединенной к линии. Однако для практических расчетов линий графический способ не применяется, а пользуются аналитическими методами, рассмотрение которых дано ниже. [37]

При определении экономических сечений проводов и потерь энергии обычно не учитываются так называемые потери холостого хода, вызванные коронированием проводов и емкостными токами линии , которые для электропередач напряжением выше 220 кв могут достигать значительных величин. Поэтому следует рассмотреть влияние этих потерь на экономическое сечение проводов линий электропередач. [38]

Для того чтобы токовое реле надежно размыкало контакт при отключении линии с другого конца, уставка возврата реле должна быть больше величины емкостного тока линии . [40]

Воздушные выключатели имеют следующие достоинства: взрыве — и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий , малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки. [41]

В отдельных случаях, оговоренных Правилами технической эксплуатации ( см. ПТЭ 1071 — 1072), разъединителями разрешается отключать небольшие токи холостого хода трансформаторов и емкостные токи линии . [42]

В линиях электропередачи напряжением выше 110 — 220 кв, как уже отмечалось ранее, существенное значение имеют потери мощности и энергии, вызванные протеканием емкостных токов линии . Для линий напряжением 750 кв и длиной 400 км ошибка в определении потерь энергии из-за неучета емкостных токов составляет 20 — 40 % от суммарного значения потерь на нагревание проводов. [44]

Свойства отделителя определяют и область его применения: это выключатель высокого напряжения, очень небольшой мощности, служащий для оперативного отключения тока холостого хода трансформаторов и емкостного тока линии небольшой длины в нормальном режиме. [45]

Расчет емкостных токов присоединений в сети 6(10) кВ

В данной статье речь пойдет о расчете собственных емкостных токов для различных присоединений в сети 6(10) кВ с изолированной нейтралью.

Как известно через трансформатор тока нулевой последовательности (ТТНП) неповрежденных присоединений протекает собственный емкостной ток.

При однофазном замыкании на землю (ОЗЗ) через ТТНП поврежденного присоединения будет протекать суммарный емкостной ток всех неповрежденных присоединений.

Векторные диаграммы поврежденного и неповрежденного присоединения представлены на рис.1.

Исходя из выше изложенного, защиту от ОЗЗ выполняют отстраиваясь от собственного емкостного тока.

Расчет емкостных токов выполняется для следующих присоединений:

  • кабельные линии;
  • воздушные линии;
  • асинхронные и синхронные электродвигатели;
  • генераторы;

Кабельные линии

1. Удельный емкостной ток замыкания на землю для кабельной линии определяется по формуле 7 [Л1, с.6]:

  • Uф = Uл/√3 — фазное напряжение сети, В;
  • ω = 2Пf = 314 – угловая частота напряжения, (рад/с);
  • Сф — емкость одной фазы сети относительно земли (мкФ/км);
Читать еще:  Кабели постоянного тока прокладка

1.1 Емкостной ток кабельной линии определяется по формуле 6.4 [Л3, с.215]:

  • L – длина кабельной линии, км;
  • m – число проводов (кабелей) в фазе линии.

Определить емкостной ток кабельной линии длиной 500 м, выполненный кабелем АПвЭВнг сечением 3х120 мм2 при напряжении сети 10 кВ.

1. Определяем удельный емкостной ток замыкания на землю для кабеля АПвЭВнг сечением 3х120 мм2:

где: Сф = 0,323 мкФ/км — емкость одной фазы сети относительно земли, принимается из технических характеристик кабеля, которые предоставляет Завод-изготовитель, в данном случае значение Сф, принято из приложения 7 таблица 40 «Инструкция и рекомендации по прокладке, монтажу и эксплуатации кабелей с изоляцией из сшитого полиэтилена на напряжение 6,10,15,20 и 35 кВ ОАО «Электрокабель» Кольчугинский завод».

Как мы видим результат расчета совпадает со значением таблицы 40.

Если же вы не смогли найти значение Сф, для определения значения удельного емкостного тока можно воспользоваться таблицей из [Л2, с.141].

2. Определяем емкостной ток кабельной линии, учитывая длину линии:

Воздушные линии

Емкостной ток для воздушной линии 6-35 кВ определяется по формуле представленной в [Л2, с.142]:

  • Uн – номинальное напряжение сети (6 или 10 кВ), кВ;
  • L –длина воздушней линии, км;
  • m – число проводов (кабелей) в фазе линии.

Синхронные и асинхронные электродвигатели

Собственный емкостной ток синхронных и асинхронных двигателей определяется по формуле 6.3 [Л3, с.215] и выражеться в амперах:

  • fном. – номинальная частота сети, Гц;
  • Сд – емкость фазы статора, Ф;
  • Uном. – номинальное напряжение электродвигателя, В.

Емкость фазы статора Сд принимается по данным завода-изготовителя. Если же данные значения отсутствуют, можно воспользоваться следующими приближенными формулами [Л3, с.215]:

  • для неявнополюсных СД и АД с короткозамкнутым ротором:

  • Sном. – номинальная полная мощность электродвигателя, МВА;
  • Uном. – номинальное напряжение электродвигателя, кВ.
  • для остальных электродвигателей:

  • Uном. – номинальное напряжение электродвигателя, В;
  • nном. – номинальная частота вращения ротора, об/мин.

Турбогенераторы и гидрогенераторы

Собственный емкостной ток при замыкании одной фазы на землю турбогенераторов и гидрогенераторов определяется по той же формуле 6.3 [Л3, с.215], что синхронные и асинхронные двигатели, см. [Л4, с.48].

Емкость фазы статора Сд по отношению к землю для турбогенераторов и гидрогенераторов, определяется по тем же формулам, что и для двигателей, согласно [Л4, с.48].

В таблице 3 [Л4, с.48] проводиться значения емкостных токов при замыкании одной фазы на землю для некоторых типов турбогенераторов и гидрогенераторов. Особое внимание обратите на последние 2 столбца таблицы.

  1. РД 34.20.179 Типовая инструкция по компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ — 1993 г.
  2. Расчеты релейной защиты и автоматики распределительных сетей. М.А. Шабад -2003 г.
  3. Корогодский В.И., Кужеков С.Л., Паперно Л.Б. Релейная защита электродвигателей напряжением выше 1 кВ, 1987 г.
  4. Руководящие указания по релейной защите. Выпуск 01. Защита генераторов, работающих на сборные шины.
  5. СТО ДИВГ-058-2017. Расчет токов коротких замыканий и замыканий на землю в распределительных сетях. Методические указания. 2017г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Основная масса литературы, касающейся выбора уставок современных дифференциальных защит.

В данном примере рассмотрим расчет уставок защит для ячейки 6 кВ питающей реакторное устройство плавного.

Содержание 1. Определение сопротивлений питающей энергосистемы2. Определение сопротивлений.

В данной статье я хотел бы рассказать как нужно выбирать указательные реле РЭУ-11 в схемах вызывной.

Автоматическая частотная разгрузка (АЧР) служит для ликвидации сравнительно небольшого дефицита.

Отлчиная статья. Благодарю

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Расчет релейной защиты линии 10кВ

Линия электропередач осуществляет транспорт электроэнергии из точки А до точки В. На напряжении 6-35кВ ЛЭП выполняются с компенсированной или изолированной нейтралью. Данное обстоятельство накладывает определенные особенности выполнения устройств РЗА.

Например, в данных сетях допустима длительная (до нескольких часов) работа при однофазном замыкании на землю (ОЗЗ). В данном случае нагрузку переводят на другую линию, после чего происходит отключение. Также возможны варианты, когда защита от ОЗЗ на землю действует только на сигнал, либо вообще отсутствует.

Защита от двухфазных и трехфазных замыканий КЗ обеспечивается установкой комплектов РЗА в двух фазах из трех: фазе А и фазе С. Так как однофазное КЗ не критичное, то при двухфазном или трехфазном КЗ всегда отключится вся линия.

  • ф.А+В => отключится по ф.А линия
  • ф.А+С => отключится по двум фазам
  • ф.В+С => отключится линия по ф.С

Другое дело, если произойдет двойное замыкание на землю. Это когда на двух параллельных линиях замыкается по одной разноименной фазе. В итоге у нас получается, что всего имеем 6 вариантов короткого замыкания:

  • в 2 случаях отключается одна линия
  • в 2 случаях другая линия
  • и еще в 2 случаях происходит отключение сразу 2 линий

Получается, что в 4 вариантах из 6 одна из линий остается в работе. Это является преимуществом данного способа подключения. Другое дело, если при расшиновке фаз, вдруг не туда посадят А и В, или В и С. Тогда варианты станут плачевнее и вероятность аварий увеличится.

Скромный пример, замеряли ток на секции, или на движке каком-то, через клеммник ТТ в релейном отсеке. И после пуска и набора нагрузки выявили, что отображается у нас самая настоящая ерунда. В итоге выяснилось, что фаза B и нуль от ТТ были перепутаны местами. Как говорится, выявили дефект к устранению. Для этого и существует наладка, чтобы после монтажа проверить готовность и сдать эксплуатации к безаварийной работе.

Вопрос на засыпку? А почему двойным замыканием на землю не считается вариант двойного замыкания на одноименные фазы?

Теперь перейдем к рассмотрению и беглому рассчету следующих защит: МТЗ, ТО, ОЗЗ. Беглому, так как существует столько нюансов, что люди не один десяток книг на эту тему написали. Защиты могут выполняться, как отдельно на реле, так и в комплексе, как часть микропроцессорного терминала. Для защиты линии может быть использована трехступенчатая токовая защита, где:

  • 1 ступень (токовая отсечка мгновенная) 3I>>>
  • 2 ступень (то с выдержкой времени) 3I>>
  • 3 ступень (мтз) 3I>

У ТО уставка по току самая большая — это грубая защита, а мтз более гибкая и позволяет выполнять функции дальнего резервирования.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.

1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з. — ток срабатывания защиты 2РЗ, величина, которую мы и определяем

— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

Читать еще:  Кабель для подключения светодиодной ленты 12в сечение провода

kсзп — коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс. — максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл. — ток срабатывания защиты 2РЗ

kн.с. — коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3. 1,4.

— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках — это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов. Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх — коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

— коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5. 1,0. Для различных реле эта величина может доходить до нескольких секунд.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15. 0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Расчет токовой отсечки линии

ТО может выполняться как с выдержкой времени (токовая отсечка с замедлением), так и без нее. При расчете ТО отстраивается от максимального тока короткого замыкания в конце защищаемой линии. ТО трансформатора также отсраивается от броска тока намагничивания. Формулы и более подробно про токовую отсечку написано здесь.

Для предотвращения воздействия сверхтоков и коротких замыканий, которые нельзя отключать с выдержкой времени, используется неселективная ТО без выдержки времени. Это применимо для защиты синхронных машин от КЗ на шинах, которое может привести к нарушению устойчивости параллельной работы ТГ с энергосистемой и нарушению энергоснабжения. Формула для определения тока срабатывания неселективной ТО:

В вышеприведенной формуле:

Uс.мин — междуфазное напряжение системы в минимальном режиме работы (0,9. 0,95), В

— уже знакомый коэффициент надежности = 1,1. 1,2

zс.мин — сопротивление системы до места установки отсечки, Ом

ko — коэффициент зависимости остаточного напряжения в месте установки отсечки от удаленности 3ф КЗ, определяется по зависимости графической

Остаточное напряжение — это напряжение, при котором обеспечивается динамическая стойкость работы синхронных генераторов (Uост>0,6) и электродвигателей (Uост>0,5).

Данная неселективная ТО применяется совместно с автоматикой (АВР, АПВ), что обеспечивает быстродействие при отключениях опасных кз. Однако, для совместной работы необходимо выполнить ряд мероприятий:

  • отстроить ТО от токов намагничивания трансформаторов,
  • отстроить ТО от кз на шинах НН трансформаторов, находящихся в её зоне действия
  • согласовать ТО с предохранителями, выключателями и другими устройствами, находящимися в её зоне действия

Защита от однофазных замыканий на землю

При расчетах защиты от ОЗЗ следует знать способ заземления нейтрали и в зависимости от этого производить дальнейшие действия. В сетях 6-35 кВ применяется токовая защита нулевой последовательности. Условия её выбора состоит в определении тока срабатывания защиты и определении коэффициента чувствительности

В данной формуле

Iс.фид.макс — собственный емкостной ток фидера

— коэффициент надежности равный 1,2

kбр — коэффициент броска емкостного тока при возникновении ОЗЗ

Iс.сумм — суммарный емкостной ток сети, который можно определить по формулам ниже:

для изолированной нейтрали:

В сети с изолированной нейтралью допускается работа, если емкостной ток не превышает:

  • 30А для сети 6кВ
  • 20А для сети 10кВ

Если же значение емкостного тока превышает полученное значение, то необходимо компенсировать его с помощью реактора, то есть перейти на другой тип заземления нейтрали.

Данные токов также можно узнать в специализированных организациях. Или же определить экспериментальным путем, что дает наиболее точное и реальное значение.

Пример расчета РЗ линии 10кВ

Ну и напоследок небольшой пример расчета рза трансформатора и кабеля по схеме, приведенной на рисунке ниже:

1)На первом этапе мы составили схему замещения, которая представлена справа от самой схемы.

2)На втором этапе мы рассчитываем параметры схемы замещения )(сопротивления шин, кабеля, трансформатора) и приводим их к одному напряжению:

3) Далее определим токи трехфазного короткого замыкания в точках К1, К2 и К3

4) Выберем параметры защит для трансформатора

МТЗ. определяем по формуле, которая была выше по тексту ( 9А — номинальный ток трансформатора)

ТО. Проверяем два условия (в примере приняли цифровую защиту), второе условие — отстройка от броска тока намагничивания:

5) Выберем аналогично защиту для кабельной линии плюс ОЗЗ. С учетом, что ток емкостной равен например 1,1 А/м. Получим следующее:

2020 Помегерим! — электрика и электроэнергетика

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector